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Abstract

In this paper, we will prove the existence of the non-isospectral AKNS
hierarchy with reality conditions restriction and construct the matrix form
Darboux transformation. Using this Darboux transformation, the solutions of
the relevant nonlinear equations can be expressed explicitly.
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Mathematics Subject Classification: 35Q53, 35Q55

1. Introduction

The AKNS hierarchy is one of the most important integrable systems, which was first
introduced by Ablowitz et al [1]. Many important nonlinear differential equations can be
equivalent to the integrability condition of the AKNS hierarchy [12, 13, 23]. The Darboux
matrix formalism was introduced in connection with the dressing method as originated by
Zakharov and Shabat in [28] and described in the text [27]. Important work on the Darboux
matrix method was conducted by Matveev and Salle [21], Neugebauer and Meinel [22], Levi
[17, 18], and Gu [8–15]. One may obtain nontrivial solutions to the integrable system and the
relevant nonlinear PDE by using Darboux transformation on a seed solution.

The non-isospectral problem is the problem in which the spectral parameter depends on
the time or space variables. The Ernst equations [6, 7], which are the Einstein equations for
the axially symmetric gravitational fields, were represented as the zero-curvature equations
of non-isospectral problems by Maison [20]. An excellent account of the Darboux matrix
method paying particular attention to non-isospectral problems has been given by Harrison
[16], Kramer and Neugebauer [19], and Cieśliński [3–5].

In this paper, we focus on the non-isospectral AKNS hierarchy with reality conditions
restriction. In section 2, one may review the main conclusions on the non-isospectral AKNS
hierarchy and its Darboux transformation, which are collected in the literature [30] and will be
used in the following sections. In section 3, we will show the existence of the non-isospectral
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AKNS hierarchy with reality conditions restriction, and construct its matrix form Darboux
transformation. In section 4, one may see its application to the non-isospectral su (2)-hierarchy,
whose integrability condition is equivalent to the non-autonomous NLS equation.

2. The non-isospectral AKNS hierarchy and its Darboux transformation

We assume throughout that the matrix J = diag(J1, . . . , JN) ∈ sl(N, C) in this paper is fixed,
diagonal, with distinct complex eigenvalues, and

sl(N, C)J = {X ∈ sl(N, C) : [J,X] = 0} (2.1)

sl(N, C)⊥J = {X ∈ sl(N, C) : tr(YX) = 0 for all Y ∈ sl(N, C)J } (2.2)

denote the centralizer of J and its orthogonal complement in sl(N, C) respectively. One can
easily verify the following facts:

Lemma 2.1. sl(N, C) has the direct sum decomposition sl(N, C) = sl(N, C)J ⊕ sl(N, C)⊥J
with respect to vector space. The mapping adJ : sl(N, C) → sl(N, C)⊥J is a homomorphism,
and ker(adJ ) = sl(N, C)J , which is equivalent to the fact that the restriction of the mapping
adJ : sl(N, C)⊥J → sl(N, C)⊥J is an isomorphism.

The non-isospectral AKNS hierarchy is the linear system of differential equations
⎧⎨
⎩

�x = U(λ)� = (λJ + P(t, x))�

�t = V (λ)� =
∑n

i=0
Vi(t, x)λi�

(2.3)

where P ∈ sl(N, C)⊥J and Vi ∈ sl(N, C) are matrices and the spectral parameter λ satisfies
the scalar equation

λt =
n∑

i=0

fiλ
i. (2.4)

The system is integrable if and only if the zero curvature condition

Ut − Vx + [U,V ] = 0 (2.5)

holds. If the coefficients fi in (2.4) vanish, then the spectral parameter λ is independent of t,
and the system (2.3) degenerates to the standard AKNS system.

For the standard integrable AKNS hierarchy, Vi(t, x) is determined uniformly by P(t, x)

up to the integral constants αi(t) (see [13]), and the jth flow is a differential equation. The
non-isospectral AKNS hierarchy is much more different. To determine Vi(t, x) in the non-
isospectral AKNS hierarchy, P(t, x) should be in some Schwartz space (see [30]), while the
jth flow of the non-isospectral AKNS hierarchy is an integral-differential equation. We state
the conclusion as the following proposition:

Theorem 2.2 (From [30]). Assume that P(t, ·) ∈ S
(
R, sl(N, C)⊥J

)
, i.e.

lim
x→∞ |x|k∂m

x (P (t, x)) = 0 (2.6)

for all t and non-negative integers k,m. Set

V
diag
i = π0(Vi), V off

i = π1(Vi), (2.7)
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where π0, π1 ∈ End(sl(N, C)) denote the projections of sl(N, C) onto sl(N, C)J and
sl(N, C)⊥J respectively. Then Vi is determined uniformly by P up to the integral constants
αi(t) ∈ sl(N, C)), and the recurrence formulae are

V off
n = 0, (2.8)

V
diag
i = αi(t) + fiJx +

∫ x

−∞
π0

([
P, V off

i

])
dx, (0 � i � n − 1), (2.9)

V off
i = (ad J )−1(V off

i+1,x − π1([P, Vi+1])
)
. (2.10)

The zero curvature equation of the hierarchy is equivalent to the nonlinear equation

Pt − V off
0,x +

[
P, V

diag
0

] = 0. (2.11)

Moreover, for all t and non-negative integers k,m,

lim
x→−∞ |x|k∂m

x (Vi − fiJx − αi(t)) = 0 (0 � i � n). (2.12)

The Darboux transformation for the non-isospectral AKNS hierarchy may be constructed
in the following way (see [29, 30] for the proof). Without any loss of generality, we assume that
the eigenvalues of J satisfy Re J1 > Re J2 > · · · Re JN . Let �(t, x, λ) denote the elementary
solution of the system (2.3), C ∈ GL(N, C

N) be a constant matrix, and choose the spectral
parameters

λ1(t) = · · · = λk0(t) < 0 < λk0+1(t) = · · · = λN(t), for t ∈ (−t0, t0)

satisfy (2.4). Set

D(λ) = p(λ)(λI − H�H−1),

where
� = diag(λ1, . . . , λN),

H = (�1(t, x, λ1)col1C, . . . ,�N(t, x, λN)colNC),

p(λ)−N = det P(λ) = (λ − λ1) · · · (λ − λN)

(2.13)

then one may find that D(λ) is the Darboux transformation matrix for the AKNS hierarchy. It
is equivalent to saying that such

U ′(λ) = DU(λ)D−1 + DxD
−1, V ′(λ) = DV (λ)D−1 + DtD

−1 (2.14)

preserve the same polynomial structure as U(λ) and V (λ), and

P ′ = P + [J, S] ∈ S (R, sl(N, C)⊥J ) (2.15)

holds for any fixed t ∈ (−t0, t0). Moreover, the integral constants related to U ′ and V ′ are
determined by the following:

α′
i (t) = αi(t) +

n−j+1∑
k=0

fj+k+1�
k − gj (0 � j � n), (2.16)

where gj is defined as the coefficient of the polynomial

g(λ) = 1

N

N∑
i=1

f (λ) − f (λi)

λ − λi

=
n+1∑
i=0

giλ
i. (2.17)

For convenience, we denote the last two terms of the right-hand side of (2.16) by βi(t). If
βi(t) vanishes for each i, then D(λ) is an auto-Bäcklund transformation, otherwise it is not.
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Noting that βi is determined by �, which is independent of U(λ) and V (λ), so one may get
the nontrivial solution to the hierarchy with the integral constants αi by acting the Darboux
transformation on the hierarchy with the integral constants αi − βi .

Remark 2.1. If only β0(t) �= 0, one may define a gauge matrix G(t) to attain an auto-
Bäcklund transformation by setting D̃(λ) = G(t)D(λ), where G(t) solves the differential
equation Gt = β0(t)G.

3. Reality conditions

To reduce the zero curvature condition, we need to impose reality conditions on the AKNS
hierarchy. We explain reality conditions given by involutions of sl(N, C).

Definition 3.1. Let G denote a real form of sl(N, C); i.e G is the fixed-point set of some
complex conjugate linear Lie algebra involution σ of sl(N, C). A map U from C to sl(N, C)

is said to satisfy the G-reality condition if σ(V (λ̄)) = V (λ) for all λ ∈ C. Moreover, if τ is a
complex linear Lie algebra involution of sl(N, C) such that στ = τσ and τ(U(−λ)) = U(λ),
we say that V (λ) satisfies the G-reality condition twisted by τ .

There are some typical examples.

(i) Set σ(A) = −A†, then G = su(N). V (λ) satisfies the su(N)-reality condition if V (λ̄)† +
V (λ) = 0 for all λ ∈ C.

(ii) Set σ(A) = −MA†M , where M = diag(Ik,−IN−k), then G = su(k,N − k). V (λ)

satisfies the su(k,N − k)-reality condition if V (λ̄)†M + MV (λ) = 0 for all λ ∈ C.
(iii) Set σ(A) = Ā and τ(A) = −AT , then G = sl(N, R). V (λ) satisfies the sl(N, R)-reality

condition twisted by τ if V (λ̄) = V (λ) and V (−λ)T + V (λ) = 0.

It is clear that V (λ) = ∑
i Viλ

i satisfies the reality condition if and only if Vi satisfies
the reality condition for each i. For the twisted reality condition, let K and K′ denote the ±1
eigenspaces of τ on G; a direct computation shows that V (λ) = ∑

i Viλ
i satisfies the G-reality

condition twisted by τ if V2k ∈ K and V2k+1 ∈ K′ for all k.
To reduce the zero-curvature condition, we require both U(λ) and V (λ) satisfying the

same reality condition. However, V (λ) is determined by U(λ) and the integral constants αi(t),
so we need to prove that the G-reality condition on U(λ) implies the G-reality condition on
V (λ). Noting that

σ ad(J )(A) = σ [J,A] = [σ(J ), σ (A)] = [J, σ (A)] = ad(J )σ (A) (3.1)

holds for all J,A ∈ G, one can prove the following proposition easily.

Proposition 3.1. If U(λ) satisfies the G-reality condition, the integral constant αi(t) ∈ G
for all i, and the polynomial f (λ) has the real coefficients, then V (λ) satisfies the G-reality
condition.

For the case of twisted reality condition, we also have the similar proposition.

Proposition 3.2. Let σ, τ,G,K,K′ and U(λ), V (λ) be as above. U(λ) satisfies the G-reality
condition twisted by τ , the integral constants α2k(t) ∈ K, α2k+1 ∈ K′ for all k, and the
polynomial f (λ) with the real coefficients satisfies f (λ) + f (−λ) = 0, then V (λ) satisfies the
G-reality condition twisted by τ .

The Darboux transformation for the G-hierarchy is required to preserve the reality
condition additionally, and it may be realized by choosing special �. We list some typical
cases below (see [29] for the proof):
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(i) To preserve the su(N)-reality condition, one may choose � = diag(λ0, . . . ,

λ0, λ̄0,

. . . , λ̄0).
(ii) To preserve the sl(N, R)-reality condition twisted by τ , one may choose � =

diag(λ0, . . . , λ0,−λ0, . . . ,−λ0).

4. Non-isospectral su(N )-hierarchy and non-autonomous NSL equation

Now we use the Darboux transformation to get the soliton solution of non-autonomous NLS
equation, which is the second flow of a non-isospectral su(2)-hierarchy. Set f (λ) = 2λ2, J =
diag(i,−i), α2 = −2J, α1 = α0 = 0 and

P =
(

0 iu(t, x)

−iu(t, x) 0

)
,

then the entries a0, b0, c0 in V0(λ) are followed from (2.9) and (2.10) as

b0 = −c̄0 = −(ux − xux − u), a0 = −|u|2 + x|u|2 + ∂−1|u|2, (4.1)

and according to (2.11) the zero-curvature equation is equivalent to

iut = (uxx − 2ux − xuxx) + 2|u|2u − 2x|u|2u − 2u∂−1|u|2, (4.2)

which is called the non-autonomous NLS equation. It is easy to find λ = − 2t+κi
κ2+4t2 , κ ∈ C

solving (2.4). Set u = 0 as the seed solution of (4.2) and solve the relevant system (2.3),⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�x = λJ� =
(

iλ 0
0 −iλ

)
�,

�t = V2� =
(

2i(x − 1)λ2 0
0 −2i(x − 1)λ2

)
�,

(4.3)

then we attain the elementary solution

�(x, t, λ) =
(

exp i(λx − λ) 0
0 exp i(−λx + λ)

)
. (4.4)

Noting that the eigenvalues of J are pure imaginary, we may set κ0 > 0 and

� =
(

λ0 0
0 λ̄0

)
= − 1

κ2
0 + 4t2

(
2t + κ0i 0

0 2t − κ0i

)
, (4.5)

to preserve the asymptotic condition (2.15) and su(N)-reality condition, then it follows from
(2.16) that

β2(t) = β1(t) = 0, β0 = 2i(Im �0).

Denote ξ = exp i(λ0x − λ0) and choose

H = (�(t, x, λ0)(1, 1)T , �(t, x, λ̄0)(−1, 1)T ) =
(

ξ −ξ̄−1

ξ−1 ξ̄

)
, (4.6)

then a direct calculation shows

S = H�H−1 = 1

1 + |ξ |4
(

λ0|ξ |4 + λ̄0 2ξ 2 Im λ0

2ξ̄ 2 Im λ0 λ0 + λ̄0|ξ |4
)

. (4.7)

Note that only β0(t) �= 0, then we may set

G(t) = exp

(
2i

∫ t

0
(Im �) dt

)
∈ SU(2),
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so that the tranformation

D′(λ) = G(t)D(λ) = G(t)p(λ)(λI − H�H−1) (4.8)

preserves the su(N)-reality condition, hence it is an auto-Bäcklund transformation. According
to (2.15), the single-soliton solution to the non-autonomous NLS equation can be expressed
as

u(t, x) = 4ξ 2 Im λ0

1 + |ξ |4 exp

(
4i

∫ t

0
(Im λ0) dt

)

= 4ξ 2 Im λ0

1 + |ξ |4
(

κ2
0 − 4t2

κ2
0 + 4t2

+
4tκ0i

κ2
0 + 4t2

)
. (4.9)

Set the single solution as the seed solution; the 2-soliton solution can also be attained by this
means.

Remark 4.1. This method may also be used to derive a Darboux transformation matrix for
the twisted sl(N, R)-hierarchy. One can find an application in [30].
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